GDP dissociation inhibitor prevents intrinsic and GTPase activating protein-stimulated GTP hydrolysis by the Rac GTP-binding protein.

نویسندگان

  • T H Chuang
  • X Xu
  • U G Knaus
  • M J Hart
  • G M Bokoch
چکیده

The majority of the GTP-binding proteins of the Ras superfamily hydrolyze GTP to GDP very slowly. A notable exception to this are the Rac proteins, which have intrinsic GTPase rates at least 50-fold those of Ras or Rho. A protein (or proteins) capable of inhibiting this GTPase activity exists in human neutrophil cytosol. Since Rac appears to exist normally in neutrophils as a cytosolic protein complexed to (Rho)GDI, we examined the ability of (Rho)GDI to inhibit GTP hydrolysis by Rac. (Rho)GDI produced a concentration-dependent inhibition of GTP hydrolysis by Rac1 that paralleled its ability to inhibit GDP dissociation from the Rac protein. Maximal inhibition occurred at or near equimolar concentrations of the GDI and the Rac substrate. The ability of two molecules exhibiting GTPase activating protein (GAP) activity toward Rac to stimulate GTP hydrolysis was also inhibited by the presence of (Rho)GDI. The inhibitory effect of the GDI could be overcome by increasing the GAP concentration to levels equal to that of the GDI. (Rho)GDI weakly, but consistently, inhibited GTP gamma S (guanosine 5'-3-O-(thio)triphosphate) dissociation from Rac1, confirming an interaction of (Rho)GDI with the GTP-bound form of the protein. These data describe an additional activity of (Rho)GDI and suggest a mechanism by which Rac might be maintained in an active form in vivo in the presence of regulatory GAPs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid GTP binding and hydrolysis by G(q) promoted by receptor and GTPase-activating proteins.

Receptor-promoted GTP binding and GTPase-activating protein (GAP)-promoted GTP hydrolysis determine the onset and termination of G protein signaling; they coordinately control signal amplitude. The mechanisms whereby cells independently regulate signal kinetics and signal amplitude are therefore central to understanding G protein function. We have used quench-flow kinetic methods to measure the...

متن کامل

Purification and Characterization from Bovine Brain Cytosol of a Novel Regulatory Protein Inhibiting the Dissociation of GDP from and the Subsequent Binding of GTP to rhoB ~20, a ras p214ike GTP- binding Protein*

A novel regulatory protein for the rho proteins (rhoA p2 1 and rhoB p20), belonging to a ras p2 llras p21like small molecular weight (M,) GTP-binding protein (G protein) superfamily, was purified to near homogeneity from bovine brain cytosol and characterized. This regulatory protein, designated here as GDP dissociation inhibitor (GDI) for the rho proteins (rho GDI), inhibited the dissociation ...

متن کامل

In Vivo Dynamics of Rac-Membrane Interactions□D

The small GTPase Rac cycles between the membrane and the cytosol as it is activated by nucleotide exchange factors (GEFs) and inactivated by GTPase-activating proteins (GAPs). Solubility in the cytosol is conferred by binding of Rac to guanine-nucleotide dissociation inhibitors (GDIs). To analyze the in vivo dynamics of Rac, we developed a photobleaching method to measure the dissociation rate ...

متن کامل

The role of Mg2+ cofactor in the guanine nucleotide exchange and GTP hydrolysis reactions of Rho family GTP-binding proteins.

The biological activities of Rho family GTPases are controlled by their guanine nucleotide binding states in cells. Here we have investigated the role of Mg(2+) cofactor in the guanine nucleotide binding and hydrolysis processes of the Rho family members, Cdc42, Rac1, and RhoA. Differing from Ras and Rab proteins, which require Mg(2+) for GDP and GTP binding, the Rho GTPases bind the nucleotide...

متن کامل

The Role of Mg Cofactor in the Guanine Nucleotide Exchange and GTP Hydrolysis Reactions of Rho Family GTP-binding Proteins*

The biological activities of Rho family GTPases are controlled by their guanine nucleotide binding states in cells. Here we have investigated the role of Mg cofactor in the guanine nucleotide binding and hydrolysis processes of the Rho family members, Cdc42, Rac1, and RhoA. Differing from Ras and Rab proteins, which require Mg for GDP and GTP binding, the Rho GTPases bind the nucleotides in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 268 2  شماره 

صفحات  -

تاریخ انتشار 1993